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Water is a substance with a large variety of crystalline forms [1-4]. In natural con- 
ditions, hexagonal ice Ih, in which water crystallizes at a temperature of T = 273.15 K 
and a pressure of p = 1.013"105 Pa, is the thermodynamically stable phase. In the propaga- 
tion of a compression wave which arises under the effect of explosive and impact loads, 
as the experiments in [5, 6] show, phase transition processes take place in Ih ice. In 
particular, in a certain range of changes in the pressure applied to a sample of Ih ice, 
melting of the ice in the compression wave and the formation of a two-phase Ih ice-~ater 
mixture are observed. The theoretical description of the melting process in propagation 
of a compression wave over the ice within the framework of the mechanics of continuous 
media is based on the study of the thermodynamic properties of ice, water, and a mixture 
of the two [7, 8]. 

The equation of state of water has been studied in detail at a temperature above 
273 K [9]. The anomalous properties of water at a temperature below 273 K and the possibil- 
ity of phase transitions at high pressures into different modifications of ice create diffi- 
culties in establishing the equation of state of water in this temperature range. Never- 
theless, recently conducted experiments by man investigators make it possible to reestablish 
the thermal equation of state (TES) of water, ice, and a mixture of them at negative tem- 
peratures based on indirect data. 

I. Thermodynamic Properties of Ih Ice. In studying the thermodynamic properties and 
equilibrium melting of ice, we will use the pressure p and temperature T as independent 
variables. 

In the case of propagation of a compression wave in a solid isotropic deformable medi- 
um, in addition to the pressure, it is necessary to consider the stress tensor deviator. 
The nonhydrostatic character of the stress tensor and the difference, for example, in the 
longitudinal stress c I in a plane wave from p are significant when the stresses which 
develop in the medium do not exceed the yield point of the substance ~,. For Ih ice, the 
tensile strength and yield point in normal conditions do not exceed several MPa [10-12], 
while the effects of melting are markedly manifested at pressures of the order of 10-100 
MPa [5, 6]. In this respect, we will neglect the shear stresses and consider p the only 
important component of the stress tensor (hydrostatic approximation) in the present study. 

The TES of ice in the hydrostatic approximation is 

V~ = V~(p, T) (1.1) 

(V z is the specific volume of the ice). Subscript 1 corresponds to values describing ice 
and subscript 2 indicates values describing water. Equation (1.1) can be constructed with 
the data from experimental measurements of the thermodynamic volume expansion coefficient 
~TI = VI-I(SVI/3T)p and the isothermal compressibility coefficient ~TI = -VI-I(~VI/~P)T by 
integration of the differential equation 

dV~Vl = --~idp + ~ldr .  (1.2) 

The s e l e c t i o n  o f  t h e  method o f  i n t e g r a t i o n  i s  based  on t h e  a n a l y s i s  o f  t h e  P-T d i ag ram 
of  i c e  p l o t t e d  w i t h  t h e  s t a t i c  measurements  in  [13,  14] .  I n  F i g .  1, c u r v e s  1 and 2 a r e  
m e l t i n g  o f  I h  i c e  and I I I  i c e ,  and c u r v e  3 i s  t h e  phase  e q u i l i b r i u m  o f  I h  i c e - I I I  i c e .  
P o i n t  P i s  t h e  t r i p l e  p o i n t  o f  w a t e r  a t  p = 2 .07"102  MPa and T = 251.15  K. We n o t e  t h a t  
Ih ice, in contrast to other modifications of ice, is a material in which the melting point 
decreases with an increase in the pressure. For determining V l = V1(p, T), it is convenient 
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TABLE i 

~, MPa 

0 
49,i 
98,i 

i47,2 
i96,2 

T, K 

273,15 
269,05 
264,45 
259,i5 
252.85 

TV', �9 I 0 ~ ,  m31kg "~ 

from [13]Ifrom (1.9) 

t,0900 t,0900 
t,0775 t,083i 
t,0684 1,0764 
1,06t6 t,0699 
t,057t i,0635 

to select broken line ABC composed of segments AB and BC parallel to the coordinate axes, 
as the pathway of integration (Fig. i). The point corresponding to P0 = 10s Pa and T O = 
273.15 K was selected as initial point A, then Vz0 = 1.091 m3/kg. As a result of integra- 
tion of the complete differential (1.2), we obtain the dependence 

V, (p, T) = V,0 exp --  ~ ~n  (P', T) dp' + .y a n (Po, T') dT' . 
PO TO 

( 1 . 3 )  

The temperature in ~ is designated by T,, and the temperature in Kelvin is designated by 

T: T, = T + 273.15. 

Let us examine the experimental data required for determination of V1(p, T). The de- 
pendence of the linear expansion coefficient of ice on T in the 243-273 K range is given 
in [15]. With the data in [15], we find 

10~'aVl (Po, T) = f57.56 + 0,5556T. + 2.655.10-~T~, + 7. i i  .i0-4Ta.. ( 1 . 4 )  

The specific volume of ice at pressure P0 is 

V~(T) = V~0exp {S ar~(po, r ' )dT'}.  ( 1 . 5 )  
T o 

For finding ~Tl, we will use the results of measurements of the elastic constants of 
lh ice. The temperature dependence of the isothermal modulus of dilatation KT(Pa) for p = 

P0 is [16] 

KT = 86A7. i0 s (i - -  aT,)/(i - -  aTe) 

( a  = 1 . 4 1 8 " i 0  - 3 ,  T m = - 1 6 ) .  Hence 
t.i827.i0 -1~ 

~n(Po, T ) = ~ l ( r ) = ~ r  = i - - a T ,  ( 1 . 6 )  

Bridgman found  a d i f f e r e n t  v a l u e  o f  BT1 ~ e q u a l  t o  3 . 3 " 1 0  -z~ Pa -1 ,  and i t  s i g n i f i c a n t l y  

d i f f e r s  f rom Eq. ( 1 . 5 )  and t h e  d a t a  o f  o t h e r  i n v e s t i g a t o r s  [ 4 ] .  E q u a t i o n  ( 1 . 5 )  was used  
f o r  t h e  c a h u l a t i o n  be low.  

The d e p e n d e n c e  o f  ~Tz on t h e  p r e s s u r e  must  s t i l l  be f o u n d .  The e x p e r i m e n t s  in  [17] 
show t h a t  f o r  Ih  i c e ,  t h e  f o l l o w i n g  r e l a t i o n  h o l d s  a low t e m p e r a t u r e s  in  a wide  r a n g e  O f  
changes  in  p 

K = KTo+ml(p- -Po)  ( 1 . 7 )  
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with coefficient m z, which is weakly dependent on T. It was shown in [18] that m I = 4.4 
for the temperature region of interest to us. That is, 

~i  (T) ( i. 8) 
~rl = I + mlp}1 (T) (p-- P0) 

Using Eqs. (1.3)-(1.8) and recalling that pressures of p ~ P0 will subsequently be 
examined, we arrive at the thermal equation of state of ice 

V~ (T) ( i .  9) 
v~ (p, r) = _h + ~}~ (r) p]i/~" 

Pounder [19] previously proposed a TES for ice 

V? i = 916.8 [ t  + 0.94.10 -12 (p - -  i05)] (l  - -  t .53-10-4T,) ,  ( 1 . 1 0 )  

where p i s  measured  in  Pa. I t  i s  e a s y  t o  see  t h a t  i f  ST1 ~ = c o n s t  in  Eq. ( 1 . 9 )  and we 

assume t h a t  aTz ~ 10 -4 K -1 and 8Tz ~ ~ 10 - l ~  Pa - z ,  t h e n  f o r  p ~ 10 MPa, a f t e r  l i n e a r i z a t i o n  

we o b t a i n  an e q u a t i o n  o f  t y p e  ( 1 . 1 0 )  f rom Eq. ( 1 . 9 ) .  Thus ,  Eq. ( 1 . 1 0 ) ,  w e l l  known in  t h e  
l i t e r a t u r e  on t h e  p h y s i c s  o f  i c e ,  g e n e r a l i z e s  Eq. ( 1 . 9 )  t o  t h e  c a s e  o f  a w i d e r  r a n g e  o f  
changes  in  p and T w i t h  c o n s i d e r a t i o n  o f  t h e  more p r e c i s e  v a l u e s  o f  t h e  the rmodynamic  c h a r -  
a c t e r i s t i c s  o f  i c e .  

The r e s u l t s  o f  B r i d g m a n ' s  e x p e r i m e n t s  [13] and t h e  c a l c u l a t i o n  o f  V z w i t h  Eq. ( 1 . 9 )  
w i t h  Vz0 = 1 . 0 9 . 1 0  -a m3/kg a r e  r e p o r t e d  in  Table  1. Note  t h a t  in  compar i son  t o  t h e  d a t a  
in  [ 1 3 ] ,  Eq. ( 1 . 9 )  g i v e s  s l i g h t l y  o v e r e s t i m a t e d  v a l u e s  o f  Y 1, a l t h o u g h  t h e  r e l a t i v e  e r r o r  
does  n o t  exceed  0 .9Z.  

The s p e c i f i c  h e a t  c a p a c i t y  o f  I h  i c e  i s  
P 

[O~T1 
c~(p, r) = c,l(po, r) r J  (1. 11) 

Pa 

The value of Cpl(P0 , T) was measured in a wide range of T. In particular, the following 

dependence [20] is valid for the values of T from the examined range of 243-273 K 

cp1(p0, T)=2-115"103+7,79T, J/(kg.deg). (1.12) 

The expressions for ~Ti and B~Ti/BT are determined from Eq. (1.9). 

The thermodynamic characteristics of Ih ice obtained were used below in studying equili- 
brium melting of ice. 

2. Thermodynamic Properties of Water. The thermodynamic properties of water, includ- 
ing the TES, have been studied in detail at T > 273 K in a wide range of changes in the 
pressure [9, 21-23]. For the purpose of the present study, it is necessary to establish 
the properties of water at T ~ 273 K and p ~ 2.07"102 MPa. 

At different pressures from 0.1 to 3.102 MPa, water allows significant supercooling. 
The region of the supercooled liquid state of H20 covers a significant part of the region 
of existence of Ih ice, and the lowest temperature of supercooled water is attained for 
p = 2.10 = MPa and is equal to 181 K [I]. In addition, water at T < 277 K has a number of 
anomalous properties: the volume expansion coefficient of water =T2(P0, T) is negative, 

the specific heat capacity Cp2(P0 , T), and isothermal compressibility ~T2(P0, T) increase 

with a decrease in the temperature. An explanation of these anomalies is found in the 
unique properties of the H20 molecule [i]. 

Measurements of the density of supercooled water to T = 243 K were conducted in [24]. 
Analogous data up to T = 253 K are reported in [25]. Within the limits of the experimental 
precision, [24] and [25] are in agreement. 

The results of the precision experiments to determine aT2 in a wide range of changes 

in the temperature and pressure are given in [26]. The interpolationequation which gives 
~T2(P, T) and describes its anomalies is [26] 

104ar2(p, T) = A -+ B/ (C 4- H),  ( 2 . 1 )  

A = a I -~- a2T q- a3T 2, B = a 4 4- a~T + a~T ~ + a~HT -F asH, 

C = a s + aloT --~ a n T  2 + ai Ta, H = p --~ aaaP ~ iF ai4p a 
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[coefficients a~ and ais from Eq. (2.1) are reported in the Appendix]. 

The isothermal compressibility of water is determined with Eq. (2.1) as 
T 

T 1 

The d e p e n d e n c e  o f  ~T2(P,  T1) f o r  T 1 

d a t a  in  [ 2 7 ] :  

( 2 . 2 )  

= 323.16 K was established in {26] by processing the 

4 

104~T2 (p, Tx) = E hip'. ( 2 . 3 )  
i=O 

Coefficients b i are reported in the Appendix. The value of 8T2 in Eqs. (2.2) and (2.3) is 

measured in bar -I , and the pressure p is measured in bars. 

The TES of water is given by the equation 

V 2 (p, T) = V~0 exp - -  8T2(P', T1) dp' + ar~(p, r') dr '  (2.4) 
P0 

(V20 = 1 .01215"10  -a m a / k g ) .  I n  t h e  p r e s e n t  s t u d y ,  t h e  s p e c i f i c  vo lume o f  w a t e r  was d e t e r -  
mined n u m e r i c a l l y  a c c o r d i n g  t o  Eq. ( 2 . 4 )  w i t h  t h e  S impson e q u a t i o n .  We n o t e  t h a t  Eq. ( 2 . 4 )  
d e s c r i b e s  t h e  a n o m a l o u s  p r o p e r t i e s  o f  w a t e r  n o t e d  a b o v e .  

TES o f  w a t e r  which  i s  l e s s  p r e c i s e  bu t  s a t i s f a c t o r y  f rom a p r a c t i c a l  p o i n t  o f  v iew 
can  be o b t a i n e d  w i t h  t h e  r e s u l t s  i n  [ 2 5 ] .  I n t e r p o l a t i o n  e q u a t i o n s  f o r  f3T2(p0, T) and V2 ~ • 

(T)  = V2(p 0, T) when T c h a n g e s  f rom 273 t o  253 K a r e  g i v e n  in  t h i s  s t u d y ,  i f  we assume 
t h a t  a(~T 2 a ) / S p  = m 2 f o r  m 2 = 6 .7  [ 2 8 ] ,  t h e n  s i m i l a r l y  t o  See .  1, we a r r i v e  a t  t h e  e q u a -  
t i o n  

V 2 (p, T) = v ~ (T) (2.5) 

The n u m e r i c a l  c o e f f i c i e n t s  o f  Eq. ( 2 . 5 )  a r e  g i v e n  in  t h e  Append ix .  The v a l u e s  o f  t h e  
s p e c i f i c  vo lume  c a l c u l a t e d  w i t h  Eq. ( 2 . 5 )  f o r  T f rom 273 t o  253 K and p up t o  2"102 MPa 
were  compared  w i t h  B r i d g m a n ' s  e x p e r i m e n t a l  d a t a  on t h e  s p e c i f i c  vo lume o f  w a t e r  in  [13,  14] .  
The maximum r e l a t i v e  e r r o r  does  n o t  e x c e e d  0.2% in  t h e  i n d i c a t e d  r a n g e  o f  c h a n g e s  in  p and 
T, which  d e m o n s t r a t e s  t h e  p r a c t i c a l  v a l i d i t y  o f  Eq. ( 2 . 5 ) .  

The specific heat capacity of water Cp2(P, T) is established by the dependence 

P 
tm ( 2. 6 ) 

c~ (p, T) = c~  (p0, r )  - r . /  v -~ \-~T" + a~2) dp'. 
Po 

The e x p r e s s i o n s  f o r  t h e  f u n c t i o n s  in  Eq. ( 2 . 6 )  u n d e r  t h e  i n t e g r a l  s i g n  a r e  d e t e r m i n e d  f rom 
Eqs. (2.1) and (2.4), and the integral itself is calculated with the Simpson equation. 
The first term in the right part of Eq. (2.6) can be found with the experimental data on 
supercooled water, it was noted in [29] that for p = P0 the specific heat capacity of water 
cv2 is almost constant in the range of changes in T from 247 to 278 K and is equal to 
4.206"i0 s J/(kg'deg). Then Cp2(P0, T) is found with the well-known thermodynamic equation 

Cp2 - -  CV2 = Tcz~2V~I~T2, ( 2 . 7 )  

whose right part is calculated with Eqs. (2.1)-(2.4). Calculation of Cp2(P0, T) with Eq. 

(2.7) shows that this value increases with a decrease in T, which corresponds to the experi- 
ments from [29]. 

3. Calculation of Equilibrium Melting of lh Ice. Line i in Fig. 1 corresponds to 
the p and T at which the coexistence of lh ice and water in the form of a two-phase mixture 
is thermodynamically admissible. Let z be the weight fraction of water in the mixture. 
Then the specific volume of the mixture V and its entropy S are written as 

V = ( i - - O V I + z V 2 ,  S = ( l - - z ) S l + z S ~  ( 3 . 1 )  
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(S I and S 2 are the entropy of ice and water). A correlation was established in [30] be- 
tween the thermodynamic parameters of the phases and the mixture: 

(oVlap) s = ( t  z)[(oV~lOp)r + (2T/q)(OVJOT);• ( 3 . 2 )  

• ( V ~ - -  V~) - -  (c,  IT/q~)(V2 - -  V1) ~] -1- z[(OYflOp)r -t- (2T/q)(OV2/OT)p (V~ - -  V~) - -  (e,2T/q2)(V2 - -  V,) =1 

(q is the specific heat of melting of Ih ice). The adiabatic compressibility of the mix- 
ture (3.2) plays an important role in th e study of compression wave propagation accompanied 
by a phase transition with respect to the question of the stability of the wave configura- 
tions formed. A different equation for (~V/~p) s which requires explicit expression of S I 
and $2, is proposed in [31], where the properties of bismuth were studied. 

Let us examine the process of adiabatic loading of the mixture, considering S = const. 
The partial derivative in the left part of Eq. (3.2) is then substituted by dV/dp. It is 
necessary to add another two equations to (3.2) for determining the dependence of V on p 
on the phase equilibrium line: the Clapeyron-Clausius equation, which we will write as 

d T l d p  = T(Vz  - -  V1)%, ( 3 . 3 )  

and the equation which describes the change in the specific heat of melting along the phase 
equilibrium curve [32]: 

q q (V2~T$ --  VI~T1)] T ( ~  r V1) 
dq=dp C P z - - C p l + ~  - V s ' V  1 j q ( 3 . 4 )  

We will thus have a system of ordinary differential Eqs. (3.2)-(3.4); after solving it to- 
gether with Eq. (3.1) for the given initial conditions, we can determine the adiabatic de- 
pendence V(p), and numerically calculate T(p) (i.e., determine the melting curve) and find 
q(p). All of the values in the right parts of system (3.2)-(3.4) were obtained in Secs. 
i, 2 of the present study. 

System (3.1)-(3.4) was integrated numerically with the Runge-Kutta method. The start- 
ing data for p = P0 were T = 273.15 K and q = 333.7.103 J/kg. The initial volume of the 
mixture V varied from V 0 = 1.09075.10 "a m3/kg, which corresponds to ice for z = 0, up to 
V 0 = 1.0182.10 -a m~/kg (mixture of ice and water for z = 0.8). The phase boundaries of 
the mixture in plane p-V was determined simultaneously with the calculation of the depend- 
ences V(p), T(p), and q(p) during integration: left V = Vz(p, T(p)) and right V = V2(p, 
T(p)). The results of the calculations are shown in Figs. 2-4. 

The calculated melting curve T = T(p) is illustrated by the solid line and Bridgman's 
experimental data are represented by the circles in Fig. 2 [13]. The calculated and experi- 
mental data are in good agreement. An equation usually used for the analytical description 
of the melting curve is proposed in [28]: 

p =- -3 ,952 . tOq(T/273A6)  9 -  t ] ,  JR] = MPa. ( 3 . 5 )  

The difference in the values of T(p) calculated with Eq. (3.5) from the results shown in 
Fig. 2 does not exceed 0.5 K in the entire pressure range examined. 

The dependence of the specific heat of melting q on p is illustrated by the solid line 
in Fig. 3. The data from [13] are indicated by the crosses, and the data from [33] are indi- 
cated by the circles. The q calculated in the present study have intermediate values and 
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differ from Bridgman's q by 14% for p = 2.07"102 MPa. The difference in the values of V I 
on the melting curve found here and reported in [13] (see Table i) is perhaps the cause 
of this difference. 

The results of calculating V as a function of the initial conditions are shown in 
Fig. 4. The right solid line is the right boundary of the region corresponding to the lh 
ice-water equilibrium mixture, and the left solid line corresponds to the left boundary 
of the two-phase region. The isentropes of the mixture for different initial values 
of the fraction of water z in the mixture for p = P0 and T = 273.15 K are applied on the 
broken lines: 1-5) z = 0.8, 0.6, 0.4, 0.2, 0. The experimental data in [13] for the speci- 
fic volume of water and lh ice on the melting curve are indicated by the points. The final 
value of the fraction of water z on curves 2-5 is 0.88, 0.65, 0.49, and 0.19, respectively. 
If pure ice was initially at atomospheric pressure and T = 273 K, then approximately 20% 
of the mass of the ice changes into water with an adiabatic increase in the pressure to 
2'102 MPa. If the initial mixture contained more than 80% water, then it will all change 
into water at some pressure as a result of loading. 

The calculated isentropes of the mixture, as Fig. 4 shows, have the property (82V/ap2) S < 
0. An analogous situation (see [29]) occurs in the case of equilibrium melting of bismuth 
i, resulting in instability of the shock wave (SW) which propagates in the bismuth, and its 

transformation into a continuous compression wave. 

A thermal equation of state of lh ice at a negative temperature in a wide range of 
pressure changes was thus constructed in the present study based on an experiment on the 
volume expansion and isothermal compressibility coefficients. This equation is in agreement 
with the Pounder equation of state for low pressures and with Bridgman's experimental data. 
The specific heat capacity of ice Cpl was determined. The results of the precision experi- 
ments on isothermal compressibility in [26] permitted deriving thethermai equation of state 
of water at T < 273 K. The specific heat capacity of water whose temperature dependence 
corresponds to the experiment was calculated. The features established extend the existing 
concepts on the properties of water [9, 21-23] to the range of a change in the temperature 

of T < 273 K. 

The equilibrilmmmelting of lh ice was investigated. The adiabatic dependence of the 
specific volume on the pressure was found for the ice-water mixture. The melting curve 
was numerically calculated. The phase boundaries of the lh ice-water mixture were deter- 
mined in the p-V diagram. The results obtained are in agreement with Bridgman's experi- 
mental data. It was found that in adiabatic compression along the melting curve of pure 
ice in the initial state in normal conditions, approximately 20 wt. % of the ice turns into 
water below a pressure of 2.102 MPa. The calculated isentropes of the lh ice-water mix- 
ture have the property of (~2V/Bp 2 )S < 0, which should result in instability of propagation 
of SW in such a medium (the SW degenerates into a continuous compression wave). 

The results of the study can serve as the basis for investigating propagation of com- 
pression waves and interpreting the experimental data on shock loading of ice. 

Appendix. I. The numerical coefficients in Eq. (2.1) are: a I = 4"78506"101, 92 = 
-8.12847.10 -2 , a 3 = 8.49849.10 -5 , a~ = 5.56047"105 , a 5 = -3.76355"103 = = 
5.59682"10 -3 , a, -2.76522 101 , a 9 -4.28076"i0 a at0 _3.39150.i0~ a ~  5.56395, a 7 = " = , = ' a11 = 3"65873"10-i' 

a,2 = -5.89617.10 -~, ala = 3.28892.10 -~, a14 = -2.65933.10 -s 

2. The numerical coefficients in Eq. (2.3) are: b 0 = 4.41753"10 -l, b I = -1.09205 x 
10 -4, b 2 = 1.99785"10 -8, bs = -2.08128"10 -12, b 4 = 8.86050"10 -17 
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3. The functional dependence and numerical coefficients in Eq. (2.5) are: 

 o3.v  (T) = (t + %r, a,r , (Po, T) = E c T:. 

V 2 ~  i s  m e a s u r e d  i n  m 3 / k g ,  a n d  8T2 i s  m e a s u r e d  i n  P a ' l ;  b I = 1 8 . 1 5 9 7 2 5 " 1 0 - 3 ;  ao: : 

0 : 9 9 9 8 3 9 6 ,  a l  = 1 8 . 2 2 4 9 4 4 " 1 0  - 3  , a2 = - 7 . 9 2 2 2 1 " 1 0  - 6  , a3 = - 5 5 . 4 4 8 4 6 " 1 0  - 9  , a4 = 1 4 9 . 7 5 5 2  x 

10  - 1 2  , a 5 = - 3 9 3 . 2 9 5 2 . 1 0  - l s ,  c o = 5 0 . 9 8 0 4 ,  c I = - 0 . 3 7 4 9 5 7 ,  c 2 = 7 . 2 1 3 2 4 " 1 0  - 3  , c 3 : 

- 5 4 . 1 7 8 5 - 1 0  - 6  , c ,  : 0 . 3 4 3 0 2 " 1 0  - 6  , c5  = - 0 . 5 8 4 2 1 2 " 1 0  - 9  
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SPECTRAL MODELS FOR CASCADE PROCESSES IN HOMOGENEOUS TURBULENCE 

A. G. Bershadskii UDC 532.517.4 

There is a long history [i, 2] of simulating energy transport in homogeneous isotropic 
turbulence by means of spectral-density equations. Each model to some extent reflects the 
energy transport over the spectrum, but those spectral models usually do not reflect the 
cascade transport, i.e., sequential transport via nearest neighbors in the spectrum. That 
specific feature of turbulent transport is closely reflected by a reduction model due to 
Obukhov, Desnyanskii and Novikov, Gledzer, and so on [3-5]. It is of interest to demon- 
strate cascade transport directly on a spectral model. Here we propose such a model for 
homogeneous isotropic turbulence. 

The stationary Kolmogorov-Obukhov state (-5/3 law) is obtained in a scaie-invariant 
range, together with the nonstationary state having spectral density E(k, t) - t-2k -3 In 
the latter, there is energy transfer from the small-scale pulsations to the large-scale 
ones, which is usually ascribed to two-dimensional turbulence [6]. That state is observed 
also in lattice turbulence, which was used to simulate two-dimensional in the [7] experi- 
ments. In the dissipative range (in the short-wave limit), the model leads to a spectrum 
E(k) ~ exp - ak , which with logarithmic accuracy coincides with the Kreichnan-Kuz'min- 
Patashinskii asymptote [8]. 

I have calculated the damping for the total pulsation energy and the increase in the 
integral scale for the initial conditions E0(k) ~ k m exp -(k/k0) = The result is u 2 ~ t -n, 
L ~ tP, in which n = 2(1 + m)/(3 + m); p = 2/(3 + m); and L is the integral turbulence scale. 
For m = 1-4 corespondingly, those formulas give n = i, p = 1/2; n = 1.2, p = 0.4; n = 4/3, 
p = 1/3; n = 10/7, p = 2/7, i.e., values familiar from experiments and various theories 
[1, 9-14]. 

Hypotheses on the vortex interaction in turbulent flows are frequently formulated as 
spectral transport functions T(E; k, t) in the equation for such transport [i] 

OE(k, t)/at = --2vk2E(k, t) + T(E; k, t) (1) 

in which T(E; k, t) is a function of k and t and a functional of E(k, t). This incorporates 
inertial energy transport. The explicit form of that function-functional is unknown. We 
expand T(E; k, t) as a functional series in powers of E(k, t), and as the inertial effects 
are nonlinear, the series will be analogous not to a Taylor series but instead to an expan- 
sion near a branch point: 

eo oo 

T (E; k, t) = • S dkl" '"  dknG (k; kl . . . .  , k~) E 11~ (kl, t ) . . .  E ~/~ (k~, t). (2)  
n ~ 0  0 

Here m is a positive number (the algebraic order of the branch point), while G(k; k I ..... 
k n) describes the inertial effects from vortices having scales k I i .. kn-1 - , . , on vortices 
having scales k -l 
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